
CENTER FOR POLICY RESEARCH 
THE MAXWELL SCHOOL 

WORKING PAPER SERIES 

Testing for Spatial Correlation 
under a Complete Bipartite 
Network 
Badi H. Baltagi and Long Liu 
Paper No. 264 
July 2024 

ISSN: 1525-3066 
426 Eggers Hall 
Syracuse University 
Syracuse, NY 13244-1020 
T 315.443.3114  E ctrpol@syr.edu 
https://surface.syr.edu/cpr_workingpapers/ 



*Emeritus  

CENTER FOR POLICY RESEARCH – Summer 2024 
Shannon Monnat, Director 

Professor of Sociology, Lerner Chair in Public Health Promotion & Population Health 

Associate Director 
Margaret Austin 

 
SENIOR RESEARCH ASSOCIATES 

Badi Baltagi, ECN 
Robert Bifulco, PAIA 
Monica Deza, ECN 
Sean Drake, SOC 
Amy Fairchild, MAX 
Alfonso Flores-Lagunes, ECN 
Iliya Gutin, CPR 
Sarah Hamersma, PAIA 
Madonna Harrington Meyer, SOC 
Colleen Heflin, PAIA 
Yilin Hou, PAIA 

Hugo Jales, ECN  
Gabriela Kirk-Werner, SOC  
Jeffrey Kubik, ECN 
Yoonseok Lee, ECN 
Leonard M. Lopoo, PAIA 
Amy Lutz, SOC 
Yingyi Ma, SOC 
Laura-Anne Minkoff-Zern, GEO 
Shannon Monnat, SOC 
Tomás Olivier, PAIA 
Jan Ondrich, ECN 

David Popp, PAIA 
Michah Rothbart, PAIA 
Alexander Rothenberg, ECN 
Rebecca Schewe, SOC 
Ying Shi, PAIA 
Saba Siddiki, PAIA 
Perry Singleton, ECN 
Michiko Ueda-Ballmer, PAIA 
Yulong Wang, ECN 
Rick Welsh, SOC 
Maria Zhu, ECN 

 
RESEARCH AFFILIATES 

Ethan Coffel, GEO 
Christopher Faricy, POL SCI 
Shana Kushner Gadarian, POL SCI 
Jun Li, PAIA 

   Andrew London, SOC 
Jennifer Karas Montez, SOC 
Merril Silverstein, SOC 
Emily Wiemers, PAIA 

Peter Wilcoxen, PAIA 
Janet Wilmoth, SOC 
Douglas Wolf, PAIA*

 
GRADUATE ASSOCIATES

Roseanna Benser, SOC 
Mayra Cervantes, PAIA 
Brandon Charles, PAIA 
Ehsan Dowlatabadi, ECN 
Joshua Grove, SOC 
Lyuan Han, PAIA 
Ashraf Haque, PAIA    
Lucas Kaplan, ECN 
 

Harneet Kaur, SOC SCI 
Dong Lee, PAIA 
Mitchell McFarlane, PAIA 
Nicholas Oesterling, PAIA 
Michael Quinn, ECN   
Shaneya Simmelkjaer, SOC  
Sarah Souders, PAIA 
Juan Uribe-Quintero, PAIA 

Francisco Villarroel, PAIA 
Shuping Wang, PAIA 
Jingni Zhang, PAIA 
Yuwei Zhang, PAIA 
Bo Zheng, PAIA

POSTDOCTORAL SCHOLARS 
Michael Dunaway, Postdoctoral 
Research Scholar 

 
 
 
 
 
 
 
 

RESEARCH STAFF 

Jack Baldwin, Senior Associate, 
Maxwell X Lab 
Hannah Patnaik, Managing Director, 
Maxwell X Lab 

 

 

 

 

 

 

CPR STAFF 

Katrina Fiacchi, Assistant Director 

Zia Jackson, Office Coordinator 

Alyssa Kirk, Communications  
Specialist 

Davor Mondom, CPDG Center 
Coordinator 

Candi Patterson, Computer 
Consultant 



Abstract 

This note shows that for a spatial regression with a weight matrix depicting a complete bipartite network, 
the Moran I test for zero spatial correlation is never rejected when the alternative is positive spatial 
correlation no matter how large the true value of the spatial correlation coefficient. In contrast, the null 
hypothesis of zero spatial correlation is always rejected (with probability one asymptotically) when the 
alternative is negative spatial correlation and the true value of the spatial correlation coefficient is near -
1. 
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1 Introduction 

Several papers have pointed out that some special spatial weighting matrices cause problems in testing for 

zero spatial correlation. For example, one popular special spatial weighting matrix is the equal weight matrix 

that has zero elements across the diagonal and equal elements 1/ (n − 1) off the diagonal, where n denotes the 

sample size. In this scenario, everybody in the sample is everybody’s neighbor and affects his or her neighbor 

equally. Such a weighting matrix was considered by Case (1992), Kelejian and Prucha (2002), Kelejian et 

al. (2006) and Baltagi (2006), to name a few. For this equal weight matrix, Baltagi and Liu (2009) showed 

that the Lagrange Multiplier (LM) test for spatial lag dependence is always equal to n/(2n − 1) and is not 

a function of the spatial parameter ρ. This means that this LM test statistic converges to 1/2 as n → ∞, 

no matter what the true value of the spatial correlation coefficient ρ is. It also means that zero spatial lag 

correlation is never rejected for all values of ρ. Martellosio (2011) further showed that any invariant test of 

equal weights spatial dependence must have power equal to its size. 

In this paper, we consider another special spatial weighting matrix that is used in describing the complete 

bipartite network, where individuals in the sample are divided into two blocks numbering p and q with 

p + q = n. In this network, each individual in one block is connected to all individuals in the other block but 

not connected to any individual in the same block. This weighting matrix has been used by Jackson (2008), 

Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010), Blume, Brock, Durlauf and 

Ioannides (2011), Beckett (2016), Hillier and Martellosio (2018), Rödder, Dellnitz, Kulmann, Litzinge and 

Reucher (2019), Hsieh, Lin and Patacchini (2020), Li, Cao, Li, Tan and Meng (2022) and Martellosio (2022), 

to name a few. When p = 1 or q = 1, it reduces to the star network, a particularly important case in network 

theory, where one individual is connected to all other individuals in a group and all the other individuals 

in the group connect only to him. For the spatial error model with this complete bipartite network weight 

matrix, we show that asymptotically, the Moran I test, which tests the null of no spatial correlation, can 

never reject the null hypothesis against positive spatial autocorrelation no matter how large the true value 

of the spatial correlation coefficient. In contrast, the Moran I test will always reject the null hypothesis of 

zero spatial correlation against negative spatial autocorrelation, (with probability 1 asymptotically) when 

the true value of ρ is near −1. 
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2 Model and Results 

Consider the following linear regression with spatially correlated error term: 

yn = Xnβ + un (1) 

and 

un = ρWnun + εn, (2) 

where yn is an n × 1 vector for the dependent variable. ιn is a vector of ones of dimension n. Xn is an n × k 

matrix of exogenous variables including a constant. β is a k ×1 vector of parameters. ρ is a scalar parameter 

between −1 and 1. un and εn are n × 1 vectors, where εn is independent and identically distributed as 

Normal with zero mean and variance σ2 . The n × n spatial weight matrix Wn is row normalized and has 

zero elements across the diagonal, see Anselin (1988) and Anselin and Bera (1998) for an excellent treatment 

of this subject. Define Bn = In − ρWn, where In is an identity matrix of dimension n. The spatial error 

term in Equation (2) can be rewritten as un = B−1
n εn so that E (unu′ n) = σ2 (B′ 

nBn)
−1 

. The Moran I test 

statistic for the null hypothesis of H0 : ρ = 0 is given by: 

I = 
û ′ n Wn ̂un 

û ′ n ̂un 
(3) 

where ûn is the OLS residual from Equation (1), see Cliff and Ord (1972). This Moran I test has been well 

studied by Burridge (1980), Anselin (1988), Kelejian and Prucha (2001), Krämer (2005), Martelosio (2010, 

2012) and Baltagi and Yang (2013), to mention a few. As shown in Baltagi and Yang (2013), the standerdized 

Moran I statistic is asymptotically distributed as N (0, 1) under the null hypothesis of H0 : ρ = 0. To be 

specific, let 

I ∗ = 
I − µI 

σI 
, (4) 

where µI = 1 
n−k tr (MnWn) and σI = 

 
tr(MnWn Mn W ′ 

n)+tr(MnWnMn Wn)− 2 
n−k [tr(Mn Wn)]

2 

(n−k)(n−k+2) , where Mn = In −Pn 

with Pn = Xn (X ′ nXn)
−1 
X ′ n. We have I∗ d → N (0, 1) under the null hypothesis. 

In this paper, we will consider the spatial weighting matrix that corresponds to the complete bipartite 

network, where individuals in the sample are divided into two blocks such that each individual in one block 

is connected to all individuals in the other block but to none in the same block. To be specific, the complete 

bipartite network spatial weighting matrix is as follows: 

Wn =

  
0 p 

1 
q ιp ι ′ q

1 
p ιqι 

′ 
p 0 q 

  , (5) 
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where ιp and ιq are vectors of ones of dimension p and q, respectively, with p + q = n. 0p and 0q are matrices 

of zeros of dimension p × p and q × q, respectively. This weighting matrix has been studied by Jackson 

(2008), Bramoullé, Djebbari and Fortin (2009), Lee, Liu and Lin (2010), Lin (2010), Blume, Brock, Durlauf 

and Ioannides (2011), Beckett (2016), Hillier and Martellosio (2018), Rödder, Dellnitz, Kulmann, Litzinge 

and Reucher (2019), Hsieh, Lin and Patacchini (2020), Li, Cao, Li, Tan and Meng (2022) and Martellosio 

(2022), to name a few. When p = 1 or q = 1, it reduces to the star network, a particularly important case 

in network theory, where one individual is connected to all other individuals in a group and all the others in 

the group connect only to him. In what follows, for the complete bipartite network spatial weighting matrix 

defined in Equation (5), we derive the asymptotic power of the Moran I test statistic against positive or 

negative spatial autocorrelation, respectively . As shown in Lee, Liu and Lin (2010),

W 2 
n = 

  
1 
p ιpι 

′ 
p 0 pq 

0 qp 
1 
q ιqι 

′ 
q 

  = 

  
J̄ p 0 pq 

0 qp J̄ q 

  , (6) 

where J̄p =
1
p ιpι 

′
p, J̄q = 1q ιqι 

′
q, 0pq, 0qp are matrices of zeros of dimension p × q and q × p, respectively. Note 

that 

Wn +W 2 
n =

 
1 
p ιp ι ′ p 

1 
q ιp ι ′ q 

1 
p ιqι 

′ 
p 

1 
q ιqι 

′ 
q 

 = 
 
1 
p ιnι 

′ 
p 

1 
q ιnι 

′ 
q 

 
= ιn 

 
1 
p ι 

′ 
p 

1 
q ι 

′ 
q 

 
. 

Hence Mn 
 
Wn + W 2 

n 


= Mnιn 


1 
p ι 

′ 
p 

1 
q ι 

′ 
q 

 
= 0 using Mnιn = 0 when ιn is included in Xn so that MnWn = 

−MnW 2 
n . Together with the fact ûn = Mnun, we have û′ nWn ̂un = u ′ nMnWnMnun = −u ′ nMnW

2
nMnun = 

−û′nW 2 
n ûn. It is easy to see that W 2 

n is symmetric and idempotent since J̄p and J̄q are symmetric and 

idempotent. Hence û′ W 2 ̂u ≥ 0. Therefore, 

I = 
û ′ n Wn ̂un 

û ′ n ̂un 
= − 

û ′ n W
2 
n ûn 

û ′ n ̂un 
≤ 0 

and hence 

I ∗ = 
I − µI 

σI 
≤ −µI 

σI 
. 

Rewrite Xn = 

  
X p 

X q 

  , let X̄ p =
1 
p ι

′ 
p X p, X̄ q =

1 
q ι

′ 
q X q and X̄ = 1 

n ι 
′ 
n Xn. Define En = In− J̄n and 

J̄n = 1 
n ιnι 

′
n where ιn be a vector of ones of dimension n. Let X̃n = EnXn = Xn − ιn X̄. We assume the 

following: 

Assumption 1 We assume 
 
√ 
pq 
n 


X̄p − X̄q 

  = op (1). In addition, plmn→∞ 
1
n X̃

′ 
nX̃n exists and is a posi- 

tive definite matrix. 
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Assumption 1 assumes the difference between X̄p and X̄q is small. When n = ιn X for example, X̄p = 

X̄q = 1 so that X̄p − X̄q = 0. Also note that 
√ 
pq 
n ≤ p+q 

2n = 12 , where the equality holds when p = q = n2 . For 

a star network for example, where p = 1 and q = n − 1, 
√ 
pq 
n = 

√ 
n−1 
n ≈ 1 √

n . To test the null hypothesis of no 

spatial correlation, i.e., H0 : ρ = 0 against the alternative hypothesis of positive spatial autocorrelation, i.e., 

H1 : ρ > 0. One rejects H0 if I∗ > 1.645. However, in the following theorem, we show that −µI 
σI

= 1√
2 
+op (1) 

as n → ∞, the null will never be rejected against the alternative hypothesis of positive spatial correlation, 

and the test has no power no matter how large ρ is. 

Theorem 1 For the complete bipartite network spatial weighting matrix, under Assumption 1, we have 

lim 
n→∞ 

Pr 

 

I ∗ >
1 √ 
2 

 

= 0 

for all ρ. 

The proof is given in the supplemental Appendix available upon request from the authors. Theorem 1 

implies that I∗ is always bounded by 1 √
2 
as n → ∞. Since 1.645 > 1 √

2 
, the null hypothesis is never rejected 

against the alternative hypothesis of ρ > 0, no matter how large ρ is.1 

To test the null hypothesis of no spatial correlation, i.e., H0 : ρ = 0, against the alternative of negative 

spatial autocorrelation, i.e., H1 : ρ < 0. One rejects H0 if I∗ < −1.645. The following theorem shows that 

as n → ∞, and ρ is close to −1, the null hypothesis of no spatial correlation is always rejected against the 

alternative hypothesis of negative spatial correlation and the asymptotic power of the Moran I test is 1. 

Theorem 2 For the complete bipartite network spatial weighting matrix, under Assumption 1, if ρ = −1 + 

1
ψn 

, where ψn → ∞ as n → ∞, we have 

lim 
n→∞ 

Pr (I ∗ < η) = 1 

for every constant η < 0. 

The proof is given in the supplemental Appendix available upon request from the authors. For time 

series, Phillips and Magdalinos (2007) derived the asymptotic theory for the near-unit root case. Lee and 

Yu (2013) and Baltagi, Kao and Liu (2013) extended the near-unit root case to spatial regression models. In 

particular, Theorem 3 in Baltagi, Kao and Liu (2013) showed that the QMLE of ρ has a faster convergence 

rate when the spatial error is near nonstationary. In the proof of Theorem 2, we showed that I∗ p → −∞ if 

1It is worth pointing out that Theorem 1 is for the Moran I test on the regression residuals. It may not hold if one uses the 

Moran I test on the original data. In addition, as we mentioned earlier, the inclusion of the intercept term in Xn is crucial to 

Theorem 1 as it ensures MnWn = −MnW 2 
n . 
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ψn → ∞ as n → ∞. Theorem 2 implies that as n → ∞, and ρ is close to −1, the null hypothesis of no 

spatial correlation is always rejected against the alternative of negative spatial correlation with probability 

1 asymptotically. It is worth pointing out that the result in Theorem 2 holds in general, see Theorem 2 

in Kelejian and Prucha (2001) which provides a general result for the power of the test to approach 1 as 

n → ∞. One can verify that the condition in Kelejian and Prucha (2001) is satisfied when ρ = −1 + 1
ψn 

. 

3 Monte Carlo Simulation 

Following Baltagi and Yang (2013), we generate the data from Equations (1) and (2), where Xn = (ιn, x1n, x2n) 

and β = (5, 1, 1) ′ . ιn is a vector of ones of dimension n. x1n, x2n and εn are n × 1 vectors with el-

ements x1i 
iid ∼ 

√ 
6U (0, 1), x2i 

iid ∼ N (0, 1) / 
√ 
2 and εi 

iid ∼ N (0, 1), respectively. ρ varies over the range 

(−0.99, −0.9, −0.6, −0.3, 0, 0.3, 0.6, 0.9, 0.99). We let p 
n = 0.3.2 The sample sizes considered are n = (50, 200). 

For each experiment, we perform 10, 000 replications. For each data generating process, we report the per-

formance of the standardized Moran I test statistic I∗ . 

Table 1 reports the summary statistics of I∗ and the empirical frequency of I∗ > 1.645 corresponding 

to the rejection rates of the null hypothesis H0 : ρ = 0 against the alternative hypothesis of positive spatial 

autocorrelation, i.e., H1 : ρ > 0. Also, the empirical frequency of I∗ < −1.645 corresponding to the rejection 

rates of the null hypothesis H0 : ρ = 0 against the alternative hypothesis of negative spatial autocorrelation, 

i.e., H1 : ρ < 0. Figure 1 shows the histograms of I∗ for n = 200. These simulations confirm our theoretical 

results. In summary, the paper’s main result is that, regardless of ρ, I∗ asymptotically lies between −∞ 

and 1/ 
√ 
2 under the complete bipartite network. If ρ lies in a usual range satisfying spatial stability, I∗′ s 

asymptotic distribution might have an upper bound of 1/ 
√ 
2. However, if ρ is close to −1, I∗ would exhibit 

a different pattern, converging to −∞. This can be verified by comparing the first panel of Figure 1 (odd 

pattern if ρ = −0.99) with the other panels of Figure 1 (highest density around 1/ 
√ 
2). 
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Table 1: Simulation Results of the Standardized Moran I Test Statistic I∗ (p/n = 0.3) 

n = 50 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -34.704 -33.625 -22.886 -15.506 -12.199 -5.228 -4.304 -3.039 -3.134 

1st Quartile -33.803 -24.381 -4.391 -1.192 -0.241 0.105 0.312 0.422 0.443 

Median -32.811 -15.795 -1.223 0.032 0.379 0.514 0.584 0.623 0.632 

Mean -30.638 -15.012 -2.720 -0.668 -0.005 0.266 0.414 0.497 0.509 

3rd Quartile -30.877 -5.098 0.275 0.573 0.652 0.682 0.697 0.706 0.706 

Max 0.727 0.735 0.742 0.742 0.750 0.747 0.750 0.761 0.746 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.986 0.844 0.453 0.200 0.071 0.023 0.005 0.002 0.001 

n = 200 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -140.522 -124.453 -50.342 -30.464 -9.048 -6.141 -3.994 -2.102 -1.846 

1st Quartile -137.328 -56.025 -4.752 -1.194 -0.238 0.138 0.331 0.451 0.464 

Median -133.235 -26.020 -1.269 0.047 0.385 0.523 0.580 0.621 0.629 

Mean -117.641 -33.845 -3.354 -0.718 0.005 0.282 0.422 0.514 0.528 

3rd Quartile -117.029 -6.364 0.257 0.566 0.641 0.671 0.682 0.692 0.694 

Max 0.712 0.713 0.713 0.713 0.713 0.715 0.714 0.714 0.714 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.986 0.859 0.458 0.200 0.065 0.019 0.004 0.001 0.000 

Note: 10,000 replications. 
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Figure 1: Histogram of the Standardized Moran I Test Statistic I∗ (n = 200, p/n = 0.3) 
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Supplemental Appendix 

This supplemental appendix provides proofs and extra Monte Carlo results which are not intended for 

publication due to space constraints. 

A Additional Monte Carlo Simulation Results of the Moran Test 

In this section, we present additional the Monte Carlo simulation results of the Moran test. Table 2 and 

Figure 2 report the results of pn = 0.1. Table 3 and Figure 3 report the results of pn = 0.5. Overall, their 

results are similar to those of p 
n = 0.3 reported in the paper. 
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Table 2: Simulation Results of the Standardized Moran I Test Statistic I∗ (p/n = 0.1) 

n = 50 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -30.402 -29.558 -22.988 -14.751 -8.829 -4.491 -4.362 -2.545 -2.962 

1st Quartile -29.807 -22.942 -4.339 -1.142 -0.252 0.146 0.321 0.429 0.437 

Median -29.131 -15.692 -1.171 0.045 0.384 0.526 0.588 0.626 0.628 

Mean -27.291 -14.278 -2.668 -0.654 -0.004 0.291 0.421 0.500 0.513 

3rd Quartile -27.704 -5.260 0.268 0.573 0.652 0.683 0.697 0.704 0.705 

Max 0.730 0.745 0.750 0.750 0.754 0.751 0.752 0.755 0.755 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.987 0.847 0.447 0.196 0.072 0.019 0.006 0.002 0.001 

n = 200 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -136.177 -124.292 -50.456 -17.371 -11.732 -7.452 -3.250 -2.880 -2.614 

1st Quartile -133.245 -54.416 -5.099 -1.160 -0.208 0.148 0.341 0.444 0.459 

Median -129.508 -25.402 -1.291 0.064 0.388 0.512 0.587 0.621 0.627 

Mean -114.329 -33.056 -3.443 -0.676 0.013 0.287 0.433 0.506 0.524 

3rd Quartile -114.486 -6.160 0.240 0.574 0.643 0.667 0.684 0.692 0.693 

Max 0.714 0.715 0.715 0.715 0.715 0.716 0.716 0.716 0.716 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.985 0.856 0.464 0.196 0.065 0.017 0.004 0.001 0.001 

Note: 10,000 replications. 
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Figure 2: Histogram of the Standardized Moran I Test Statistic I∗ (n = 200, p/n = 0.1) 
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Table 3: Simulation Results of the Standardized Moran I Test Statistic I∗ (p/n = 0.5) 

n = 50 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -34.255 -33.305 -27.457 -16.688 -8.823 -5.505 -3.070 -2.464 -5.823 

1st Quartile -33.363 -24.338 -4.370 -1.211 -0.249 0.127 0.311 0.422 0.443 

Median -32.396 -16.097 -1.212 0.059 0.393 0.523 0.585 0.626 0.632 

Mean -30.168 -15.180 -2.699 -0.661 0.009 0.280 0.416 0.493 0.513 

3rd Quartile -30.428 -5.521 0.294 0.580 0.654 0.686 0.697 0.707 0.708 

Max 0.738 0.747 0.751 0.757 0.758 0.767 0.764 0.756 0.757 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.984 0.854 0.452 0.201 0.068 0.022 0.006 0.002 0.001 

n = 200 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min -140.108 -122.600 -53.443 -21.542 -8.710 -5.486 -3.522 -2.912 -2.082 

1st Quartile -136.951 -56.609 -4.996 -1.207 -0.248 0.141 0.326 0.444 0.461 

Median -132.993 -26.710 -1.258 0.046 0.376 0.513 0.580 0.621 0.627 

Mean -117.116 -34.086 -3.391 -0.727 -0.007 0.281 0.423 0.508 0.525 

3rd Quartile -116.913 -6.113 0.259 0.566 0.638 0.668 0.682 0.692 0.693 

Max 0.712 0.714 0.714 0.715 0.714 0.715 0.716 0.715 0.715 

Frequency of I ∗ > 1.645 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Frequency of I ∗ < −1.645 0.986 0.854 0.462 0.201 0.070 0.020 0.005 0.000 0.000 

Note: 10,000 replications. 
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Figure 3: Histogram of the Standardized Moran I Test Statistic I∗ (n = 200, p/n = 0.5) 
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B Proofs 

Lemma 1 Under Assumption 1, we have 

1. 

tr 
 
EnW 2 

n 

 
= tr 

 
EnW 2 

n EnW 2 
n 

 
= 1, 

2. 
1 
n 
X̃ ′ 
n W 2 

n X̃n = o p (1) 

3. 

tr 
 
MnW 2 

n 

 
= 1 + o p (1) 

4. 

tr 
 
MnW 2 

n MnW 2n 

 
= 1 + o p (1) 

Proof. (1) Note that 

W 2 
n ιn =

  
J̄ p 0 pq 

0 qp J̄ q 

 

  
ι p 

ι q 

  = 

  
ι p 

ι q 

  = ιn 

Using J̄n = 1 
n ιnι 

′
n, we have 

W 2 
n J̄n = J̄n 

and hence 

EnW 2 
n = 

 
In − J̄n 

 
W 2 
n =W 2 

n − J̄nW 2 
n =W 2 

n − J̄n, 

since En, W 2
n and J̄n are symmetric. Using the two equations above, we get 

W 2 
n EnW 2 

n =W 2 
n 

 
W 2 
n − J̄n 

 
=W 2 

n − J̄n. 

and hence 

EnW 2 
n EnW 2 

n = En 
 
W 2 
n − J̄n 

 
= EnW 2 

n 

since En J̄n = 0. Note that tr 
 
J̄n 

 
= 1 and tr 

 
W 2 
n 

 
= tr 

 
J̄p 

 
+tr 

 
J̄q 
 
= 2 using tr 

 
J̄p 

 
= 1 and tr 

 
J̄q 
 
= 1. 

Therefore, 

tr 
 
EnW 2 

n EnW 2 
n 

 
= tr 

 
EnW 2 

n 

 
= tr 

 
W 2 
n 

 
− tr 

 
J̄n 

 
= 1. 

(2) We have 

W 2 
n X̃n =

  
J̄ p 0 pq 

0 qp J̄ q 

 

  
X p − ι p X̄ 

X q − ι q X̄ 

  = 

 ι p 
 
X̄ p − X̄ 


ι q 
 
X̄ q − X̄ 


  , 
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where X̄ p =
1 
p ι

′ 
p X p and X̄ q =

1 
q ι

′ 
q X q. Because W 2 

n is symmetric and idempotent, i.e. W 2 
n =W 2 

n W
2 
n , we have 

X̃ ′ 
n W 2n X̃n = X̃ ′ 

n W 2 
n W 2 

n X̃n = 
 
X̄ p − X̄ 

′ 
ι ′ p 

 
X̄ q − X̄ 

′ 
ι ′ q 

 
 ι p 

 
X̄ p − X̄ 


ι q 
 
X̄ q − X̄ 


  

= p 
 
X̄ p − X̄ 

′  
X̄ p − X̄ 

 
+ q 

 
X̄ q − X̄ 

′  
X̄ q − X̄ 

 

Since 

X̄ = 
1 
n 
ι ′ n Xn = 

1 
n 

 
ι ′ p ι ′ q 

 
  
X p

X q 

  = 
1

n 

 
ι′ p X p + ι ′ q X q 

 
= 
p

n 
X̄ p + 

q 
n 
X̄ q, 

we have 

X̄ p − X̄ = X̄ p − 
 p
n 
X̄ p + 

q 
n 
X̄ q 

 
= 
q

n 

 
X̄ p − X̄ q 

 

and similarly 

X̄ q − X̄ = X̄ q − 
 p
n 
X̄ p + 

q 
n 
X̄ q 

 
= − 

p

n 

 
X̄ p − X̄ q 

 

Hence 

1 
n 
X̃ ′ 
n W 2 

n X̃n = 
p

n 

 
X̄ p − X̄ 

′  
X̄ p − X̄ 

 
+ 
q

n 

 
X̄ q − X̄ 

′  
X̄ q − X̄ 

 

= 
p

n 
q 2 

n2 

 
X̄ p − X̄ q 

′  
X̄ p − X̄ q 

 
+ 
q

n 
p 2 

n2 

 
X̄ p − X̄ q 

′  
X̄ p − X̄ q 

 

= 
pq 
n2 

 
X̄ p − X̄ q 

′  
X̄ p − X̄ q 

 

= o p (1) 

using Assumption 1. 

(3) By Lemma 2 in Ding (2021), we have 

Pn = J̄n + X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ n 

Hence 

Mn = In − Pn = In − 

 

J̄n + X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ n 

 

= En − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ n 

and 

MnW 2 
n = 

 

En − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ n 

 

W 2 
n = EnW 2 

n − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n . 

As shown in Lemma 1.1, tr 
 
EnW

2 
n 

 
= 1. Using Assumption 1 and the result in Lemma 1.2, we get 

tr 

 

X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

 

= tr 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n X̃n 

 

= tr 

 
1 
n 
X̃ ′ n X̃n 

−1  
1 
n 
X̃ ′ 
n W 2 

n X̃n 

 

= o p (1) . 
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Therefore, we obtain 

tr 
 
MnW 2 

n 

 
= tr 

 
EnW 2 

n 

 
− tr 

 

X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

 

= 1 + o p (1) 

(4) Also, 

MnW 2 
n MnW 2 

n = 

 

EnW 2 
n − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ n W 2 

n 

  

EnW 2 
n − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

 

= EnW 2 
n EnW 2n − X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n EnW 2 
n 

−EnW 2 
n X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n + X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

As shown in Lemma 1.1, tr 
 
EnW

2 
n EnW

2 
n 

 
= 1. Using W 2

nEnW
2
n = EnW 2 

n in Lemma 1.1 and En X̃n = X̃n, 

we get 

tr 

 

X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n EnW 2 
n 

 

= tr 

 
1 
n 
X̃ ′ n X̃n 

−1  
1 
n 
X̃ ′ 
n W 2 

n X̃n 

 

= o p (1) , 

tr 

 

EnW 2 
n X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

 

= tr 

 
1 
n 
X̃ ′ n X̃n 

−1  
1 
n 
X̃ ′ 
n W 2 

n X̃n 

 

= o p (1) , 

and 

tr 

 

X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n X̃n 

 
X̃ ′ n X̃n 

−1 
X̃ ′ 
n W 2 

n 

 

= tr 

 
1 
n 
X̃ ′ n X̃n 

−1  
1 
n 
X̃ ′ 
n W 2 

n X̃n 

 
1 
n 
X̃ ′ n X̃n 

−1  
1 
n 
X̃ ′ 
n W 2 

n X̃n 

 

= o p (1) . 

Therefore, 

tr 
 
MnW 2 

n MnW 2 
n 

 
= 1 + o p (1) 

Lemma 2 Under Assumption 1, we have 

1. 

(n − k) µI = −1 + o p (1) , 

2. 

(n − k) σI = 
√ 
2 + o p (1) . 

Proof. (1) (n − k) µI = tr (MnWn) = −tr 
 
MnW

2 
n 

 
= −1 + op (1) using Lemma 1. 
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(2) Since MnWn = −MnW
2
n and W 2 

n is symmetric, we have 

tr (MnWnMnWn) = tr 
 
MnW 2 

n MnW 2 
n 

 

In addition, since Mn = MnMn and W 2
n is symmetric, we have 

tr (MnWnMnW ′ n) = tr (MnWnMnW ′ n Mn) = tr 
 
(MnWn) Mn (MnWn) 

′ 
= tr 

 
MnW 2 

n 

 
Mn 

 
MnW 2 

n 

′  
= tr 

 
MnW 2 

n MnW 2 
n Mn 

 
= tr 

 
MnW 2 

n MnW 2 
n 

 
. 

Using Lemma 1, we get 

(n − k) σI = (n − k) 

 
tr (MnWnMnW ′ n) + tr (MnWnMnWn) − 2 

n−k [tr (MnWn)] 
2 

(n − k) (n − k + 2) 

= 

 
n− k 

n− k + 2 

 

2tr (MnW 2 
n MnW 2 

n )− 
2 

n− k 
[tr (MnW 2 

n )] 
2 
 

= 
√ 
2 + o p (1) . 

B.1 Proof of Theorem 1 

Proof. Because 

I ∗ = 
I − µI 

σI 
≤ −µI 

σI 
. 

where 

−µI 

σI 
= 

− (n − k) µI 

(n − k) σI 
=

1 √ 
2 
+ o p (1) 

using Lemma 2. This implies that 

lim 
n→∞ 

Pr 

 

I ∗ >
1 √ 
2 

 

= 0 

for all ρ. 

Lemma 3 1. 

MnB
−1 
n 

 
B−1 
n 

′ 
Mn = Mn − 

ρ (2 + ρ) 

(1 + ρ)2 MnW 2 
n Mn, 

2. 

MnB
−1 
n 

 
B−1 
n 

′ 
MnWn = MnW 2 

n + 
ρ (2 + ρ) 

(1 + ρ)2 MnW 2 
n MnW 2 

n , 
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Proof. (1) Using the result MnW
2
n = −MnWn in Section 2, we have 

MnW 3 
n = 

 
MnW 2 

n 

 
Wn = (−MnWn) Wn = −MnW 2 

n = MnWn, 

MnW 4 
n = 

 
MnW 3 

n 

 
Wn = (MnWn) Wn = MnW 2 

n = −MnWn, 

. . . 

Hence 

MnB
−1 
n = Mn (In − ρWn)

−1 

= Mn + ρMnWn + ρ 2 MnW 2 
n + ρ 3 MnW 3 

n + · · · 

= Mn + 
 
ρ− ρ 2 + ρ 3 − · · · 

 
MnWn 

= Mn + 
ρ 

1 + ρ 
MnWn 

= Mn − 
ρ 

1 + ρ 
MnW 2n . 

Note that W 2
n and Mn are symmetric and idempotent, with 

MnB
−1 
n 

 
B−1 
n 

′ 
Mn = MnB

−1 
n 

 
MnB

−1 
n 

′ 
= 

 

Mn − 
ρ 

1 + ρ 
MnW 2 

n 

 

Mn − 
ρ 

1 + ρ 
MnW 2 

n 

′ 

= 

 

Mn − 
ρ 

1 + ρ 
MnW 2 

n 

 

Mn − 
ρ 

1 + ρ 
W 2n Mn 

 

= Mn − 
2ρ 

1 + ρ 
MnW 2 

n Mn + 
ρ2 

(1 + ρ)2 MnW 2 
n Mn 

= Mn − 
ρ (2 + ρ) 

(1 + ρ)2 MnW 2 
n Mn. 

(2) Using the fact that Mn is idempotent, we further get 

MnB
−1 
n 

 
B−1 
n 

′ 
MnWn = 

 
MnB

−1 
n 

 
B−1 
n 

′ 
Mn 

 
MnWn 

= − 

 

Mn − 
ρ (2 + ρ) 

(1 + ρ)2 MnW 2 
n Mn 

 

MnW 2 
n 

= −MnW 2 
n + 

ρ (2 + ρ) 

(1 + ρ)2 MnW 2 
n MnW 2 

n . 

Lemma 4 Under Assumption 1, we have 

1. 
1 

n− k 
û ′ n ̂un = σ 2 + o p (1) , 
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2. 

û ′ n Wn ̂un − µI û ′ n ̂un = 
ρ (2 + ρ) 

(1 + ρ)2 σ 2 + o p (1) . 

Proof. (1) Since ûn = Mnun = MnB
−1
n εn, we get 

û ′ n ̂un = ε ′ n 

 
B−1 
n 

′ 
MnB

−1 
n εn 

Hence 

E (û ′ n ̂un) = tr 
 
B−1 
n 

′ 
MnB

−1 
n 

 
σ 2 

= tr 
 
MnB

−1 
n 

 
B−1 
n 

′ 
Mn 

 
σ 2 

= 

 

tr (Mn) − 
ρ (2 + ρ) 

(1 + ρ)2 tr 
 
MnW 2 

n Mn 
 
 

σ 2 

= 

 

n− k − 
ρ (2 + ρ) 

(1 + ρ)2 tr 
 
MnW 2 

n 

 
 

σ 2 

using Lemma 3 and tr (Mn) = n − k. Therefore 

û ′ n ̂un = 

 

n− k − 
ρ (2 + ρ) 

(1 + ρ)2 

 

σ 2 + o p (1) 

using Lemma 1. 

(2) Similarly, 

û ′ n Wn ̂un = ε ′ n 

 
B−1 
n 

′ 
MnWnMnB

−1 
n εn 

Hence 

E (û ′ n Wn ̂un) = tr 
 
B−1 
n 

′ 
MnWnMnB

−1 
n 

 
σ 2 

= tr 
 
MnWnMnB

−1 
n 

 
B−1 
n 

′ 
Mn 

 
σ 2 

= −tr 
 
MnW 2 

n 

 
σ 2 + 

ρ (2 + ρ) 

(1 + ρ)2 tr 
 
MnW 2 

n MnW 2 
n 

 
σ 2 

using Lemma 3. Also 

û ′ n Wn ̂un = 

 

−1 + 
ρ (2 + ρ) 

(1 + ρ)2 

 

σ 2 + o p (1) 

using Lemma 1. 
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Therefore, 

û ′ n Wn ̂un − µI û ′ n ̂un 

= û ′ n Wn ̂un + 
1 

n− k 
û ′ n ̂un − [(n − k) µI + 1] 

1 
n− k 

û ′ n ̂un 

= 

 

−1 + 
ρ (2 + ρ) 

(1 + ρ)2 

 

σ 2 − 
1 

n− k 

 

n− k − 
ρ (2 + ρ) 

(1 + ρ)2 

 

σ 2 + o p (1) 

= 
n − k + 1 
n− k 

ρ (2 + ρ) 

(1 + ρ)2 σ 2 + o p (1) . 

C Proof of Theorem 2 

Proof. When ρ = −1 + 1
ψn 

, we have 

ρ (2 + ρ) 

(1 + ρ)2 = 

 
−1 + 1 

ψn 

 
1 + 1 

ψn 

 

 
1 
ψn 

2 = 1− ψ 2 
n 

Hence 

û ′ n ̂un = 

 

n− k − 
ρ (2 + ρ) 

(1 + ρ)2 

 

σ 2 + o p (1) 

= 
 
n− k − 1 + ψ 2 

n 

 
σ 2 + o p (1) 

and 

û ′ n Wn ̂un − µI û ′ n ̂un = 
n − k + 1 
n− k 

ρ (2 + ρ) 

(1 + ρ)2 σ 2 + o p (1) 

= 
n− k + 1 
n− k 

 
1− ψ 2 

n 

 
σ 2 + o p (1) 

so that 

I−µI = 
û ′ n Wn ̂un 

û ′ n ̂un 
−µI = 

û ′ n Wn ̂un − µI û ′ n ̂un 

û ′ n ̂un 
= 

n−k+1 
n−k 

 
1 − ψ2 

n 

 
σ2 

(n − k − 1 + ψ2 
n) σ2 

+o p (1) = 
(n − k + 1) 

 
1 − ψ2 

n 

 

(n − k) (n − k − 1 + ψ2 
n) 

+o p (1) 

using Lemma 2. Therefore 

I ∗ = 
(n − k) (I − µI ) 

(n − k) σI 
= 

(n − k + 1) 
 
1 − ψ2 

n 

 

√ 
2 (n − k − 1 + ψ2 

n) 
+ o p (1) = 

   

O p 
 
−ψ2 

n 

 
, if ψ2 

n << n 

O p (−n) , if ψ2 
n >> n 

using Lemma 1, which implies I∗ p → −∞ if ψn → ∞ as n → ∞. This means that 

lim 
n→∞ 

Pr (I ∗ < η) = 1 

for every constant η. 
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C.1 The LM test in a Spatial Lag Model under a Complete Bipartite Network 

The following spatial lag model was considered by Baltagi and Liu (2009): 

yn = ρWnyn + Xnβ + εn (C1) 

where yn is an n × 1 vector for the dependent variable. ιn is a vector of ones of dimension n. Xn is an n × k 

matrix of exogenous variables including a constant. β is a k ×1 vector of parameters. ρ is a scalar parameter 

between −1 and 1. un and εn are n × 1 vectors, where εn is independent and identically distributed as 

Normal with zero mean and variance σ2 . The LM test statistic for the null hypothesis of H0 : ρ = 0 is given 

by: 

LM = 

 
û ′ n Wnyn/σ̂

2 
2 

D̃n + Tn 

where ûn is the OLS residual from regressing yn on Xn, and σ̂2 = 1 
n û

′ 
nûn. D̃n = 

 
WnXn β̂

′ 
MnWnXn β̂/σ̂

2 

where ˆ β is the OLS estimator, Tn = tr 
 
W 2 
n + W ′ nWn 

 
. Baltagi and Liu (2009) showed that when Wn = 

1 
(n−1) (ιnι 

′ 
n − In), LM 

p → 1 
2 . 

In this Appendix, we check the performance of this LM test under a complete bipartite network spatial 

weighting matrix using simulations. We generate the data from Equation (C1), where Xn = (ιn, x1n, x2n) 

and β = (5, 1, 1) ′ . ιn is a vector of ones of dimension n. x1n, x2n and εn are n×1 vectors with elements x1i 
iid ∼ 

√ 
6U (0, 1), x2i 

iid ∼ N (0, 1) / 
√ 
2 and εi 

iid ∼ N (0, 1). ρ varies over the range (−0.99, −0.9, −0.6, −0.3, 0, 0.3, 0.6, 

0.9, 0.99). The n × n spatial weight matrix Wn is the complete bipartite network spatial weighting matrix. 

We let p 
n = 0.3. The sample sizes considered are n = (50, 200). For each experiment, we perform 10, 000 

replications. 

Table 4 reports the summary statistics for the LM test and the empirical frequency of LM > 3.841 

corresponding to the rejection rates of the null hypothesis H0 : ρ = 0 against the alternative hypothesis of 

no spatial autocorrelation H1 : ρ ̸= 0.3 These simulations show that the LM test for spatial lag under a 

complete bipartite network spatial weighting matrix yield similar performance to that of the standardized 

Moran I∗ test for the spatial error model. In particular, this LM test can never reject the null hypothesis 

of zero spatial correlation when the true ρ is positive. In contrast, this LM test will always reject the null 

hypothesis of zero spatial correlation when the true ρ is negative and close to -1. 

3For a Chi-squared distribution with one degree of freedom, the critical value at the 0.05 significance level is 3.841. 
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Table 4: Simulation Results of the LM Test Statistic (p/n = 0.3) 

n = 50 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1st Quartile 470.711 38.480 0.170 0.014 0.004 0.002 0.001 0.001 0.001 

Median 507.278 206.388 3.523 0.260 0.045 0.019 0.012 0.007 0.007 

Mean 468.893 207.992 19.571 2.937 0.677 0.220 0.096 0.052 0.048 

3rd Quartile 520.001 357.808 22.569 2.324 0.378 0.116 0.061 0.040 0.037 

Max 530.469 520.195 308.540 132.715 55.266 16.736 7.560 3.583 3.971 

Frequency of LM > 3.841 0.989 0.874 0.491 0.186 0.045 0.008 0.001 0.000 0.000 

n = 200 

ρ -0.99 -0.9 -0.6 -0.3 0 0.3 0.6 0.9 0.99 

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1st Quartile 6879.291 53.859 0.168 0.012 0.004 0.002 0.001 0.001 0.001 

Median 7945.421 732.233 3.637 0.218 0.044 0.018 0.010 0.007 0.006 

Mean 6894.053 1423.008 35.373 3.523 0.695 0.199 0.084 0.047 0.041 

3rd Quartile 8225.423 2454.621 28.683 2.170 0.378 0.113 0.054 0.038 0.032 

Max 8404.211 7148.934 1156.906 372.931 38.683 14.767 5.070 3.370 2.288 

Frequency of LM > 3.841 0.986 0.875 0.493 0.187 0.045 0.006 0.001 0.000 0.000 

Note: 10,000 replications. 
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