Discussion of

"How Do Households Value the Future? Evidence from Property Taxes"

Authors: H.R.A. Koster, E.W. Pinchbeck

Discussant: M. Kumhof, Bank of England

Syracuse-Chicago Webinar on Property Tax Administration and Design

November 4, 2022

Disclaimer

The views expressed herein are those of the authors, and should not be attributed to the Bank of England.

1 Summary of the Paper

- Estimation of nominal net of growth discount rates.
- Using UK data on:
 - Council tax differences across councils.
 - Housing transactions:
 - * Spatial dimension.
 - * Time dimension.
 - * Quality dimension.
- Question: Value difference = PDV of tax difference (c.p.)?
- Main result:
 - 3.7% net (of growth) nominal discount rate.
 - 7.5% gross nominal discount rate.
 - Lower discount rates for more "sophisticated" and richer borrowers.
- Comparison: Close to market borrowing rates.
- Conclusion: Households are rational and optimizing.

2 Simple Tax Analytics

- Assumptions for derivations:
 - -1 period =1 year.
 - Nominal interest rate i is constant.
 - Nominal land rental value y_t :
 - * Available at year-end.
 - \ast Grows at the constant nominal rate n^y .
 - * Real growth rate g^y .
 - Nominal taxes τ_t :
 - * Due at year-end.
 - * Grow at the constant nominal rate n^{τ} .
 - * Real growth rate g^{τ} .
 - Public goods financed through taxes p_t :
 - * Available at year-end.
 - * Grow at the constant nominal rate $n^{\tau}.$
 - * Real growth rate g^{τ} .

- Other assumptions of the paper:
 - τ is lump-sum \Rightarrow does not directly affect y_t .
 - * τ is not proportional to land asset values V_t .
 - * τ is not proportional to land rental values y_t .
 - Ratio of marginal utilities $\lambda_{t,t+s}$ can be set to 1.
 - Tax capitalization ratio β need not equal 1.
 - It is acknowledged that higher τ_t can lead to higher p_t .
 - Fixed housing supply: Land, not structures.
 - Literature: Real estate value changes mainly driven by land.
- Ignore risk premia: Cannot be identified separately from expected growth.

• Value of land from a standard land Euler equation (not for structures!):

$$V_{t} = \sum_{s=0}^{\infty} \lambda_{t,t+s} \frac{y_{t+s} - \beta (\tau_{t+s} - p_{t+s})}{(1+i)^{s+1}}$$

$$\approx \sum_{s=0}^{\infty} \left(\frac{y_{t} (1+n^{y})^{s}}{(1+i)^{s+1}} - \frac{\beta (\tau_{t} - p_{t}) (1+n^{\tau})^{s}}{(1+i)^{s+1}} \right)$$

$$= \frac{y_{t}}{i-n^{y}} - \frac{\beta (\tau_{t} - p_{t})}{i-n^{\tau}} \approx \frac{y_{t}}{r-g^{y}} - \frac{\beta (\tau_{t} - p_{t})}{r-g^{\tau}}$$

• In the notation of the paper:

- Land asset values
$$(r_H = r - g^y = i - n^y, r_T = r - g^\tau = i - n^\tau)$$
:
 $V_{i,t} = \frac{\pi H_{i,t}}{r_H} - \frac{\beta \left(T_{i,t} - P_{i,t}\right)}{r_T}$
- Land rents $R_{i,t} = V_{i,t}r_H$:

$$R_{i,t} = \pi H_{i,t} - \beta \frac{r_H}{r_T} T_{i,t} = \pi H_{i,t} - \tilde{\beta} \left(T_{i,t} - P_{i,t} \right)$$

3 Estimation I: Capitalization Ratio

• Estimating β from rents:

$$R_{i,t} = \pi H_{i,t} - \tilde{\beta} T_{i,t} + f\left(P_{i,t}\right) + \phi_{\kappa bt} + \omega_{i,t}$$

- No time differencing due to limited data.
- Spatial differencing using boundary effects b and public spending $P_{i,t}$.
- Result 1: $\tilde{\beta} = \beta r_H / r_T$ not statistically different from 1.
- Result 2: Inner London $r_H = 3.0\%$, very close to estimated r_T (see below).
- Implication: $\beta = 1$ is a reasonable assumption.
- The literature does not contradict this strongly.

4 Estimation II: Discount Factor

• Interjurisdictional equation:

$$\Delta V_{i,\tilde{t}} = -\frac{\beta}{r_T} \Delta T_{i,\tilde{t}} + \phi_{\kappa b\tilde{t}} + \Delta \omega_{i,t} + \frac{\Delta \pi_{\tilde{t}}}{r_H} H_{i,t} + \frac{1}{r_P} \Delta f(P_{i,\tilde{t}})$$

- Estimate in differences to eliminate unobserved characteristics:
 - Impossible to fully know $H_{i,t}$.
 - $\Delta \pi_{\tilde{t}}$ = change in preferences for attributes (size, age, open space).
- Estimate at LA boundaries to eliminate public spending benefits:
 - Relative $P_{i,t}$ goes to zero at the boundary. Non-excludable.
 - But with $\Delta f(P_{i,\tilde{t}})$ test this more directly. f = polynomial.
- Fixed effects $\phi_{\kappa b \tilde{t}}$:
 - $\kappa = tax$ band (8 bands).
 - \tilde{t} = pair of years when property sold (2.3 million pairs).
 - b = boundary between a pair of local authorities (326 LAs): 1km-2km.

- Interjurisdictional estimation result: $r_T = 3.7\%$ and $n^{\tau} = 3.8\%$ (data) $\Rightarrow i \in [3.7\%, 7.5\%]$.
- Intrajurisdictional estimation result:

 $r_T=$ 2.9% and $n^{ au}=$ 3.8% (data) \Rightarrow $i\in$ [2.9%, 6.7%].

- Why the ranges?
 - $P_{i,t}$ tightly comoves with $T_{i,t}$.
 - If it's valued the same, tax growth has no net effect on values.
 - Question: Does that not contradict the estimation specification?
- Comparison opportunity cost rates range: $i \in [3.8\%, 5.7\%]$:
 - Risk-free rate: 3.8%.
 - Fixed mortgage rate: 4.4%.
 - Variable mortgage rate: 5.7%.

- Time pattern:
 - Close comovement until 2008 at lower end of range (i.e. incl. $P_{i,t}$).
 - Discount rates remain flat after 2008.
 - But market rates drop a lot.
 - Hypothesis: Due to 2008 downward revision in expected tax growth n^{τ} .
 - Question: Does that not require upward revision of pre-2008 n^{τ} ?
- Cross-sectional pattern: Lower discount rates for
 - More "sophisticated" borrowers.
 - Richer borrowers, e.g. without mortgage finance.

5 Comments

- This is a published paper:
 - I am sure the empirical part has been put through the grinder.
- The issue here is rationality and optimal behavior:
 - 1 pp difference b/w discount rate and opportunity cost would be large.
 - The range of estimates presented covers 4 percentage points.
 - So results are suggestive but not conclusive concerning optimal behavior.
- Why do we not look only at the upper end of the range?
 - The estimation specification has 2 controls for the effects of spending.
 - Any residual effect should therefore be purely due to taxes.
 - Unless the idea is that there is spatial variation inside each LA: Spending does matter away from the boundary.
 - If that is the idea, it should be spelled out.
 - At the upper end of the range, buyers discount the future by too much.
 - How do we interpret that?

- Some more corroboration:
 - Kumhof, Tideman, Hudson and Goodhart (2022) on land value taxation.
 - Versions of this paper exist for the US and the UK.
 - UK after-tax return to land in 2018: 4.2%.
 - This falls within the range of this paper.
- Bottom line:
 - Very valuable contribution to the literature.
 - My only major comment:
 - I would like a bit more help concerning which part of the considerable range for implicit discount rates I should pay most attention to.

THANK YOU